Brieskorn spheres, homology cobordism and homology balls
Oguz Savk (Bogazici University)
Abstract: A classical question in low-dimensional topology asks which homology 3-spheres bound homology 4-balls. This question is fairly addressed to Brieskorn spheres Σ(p,q,r), which are defined to be links of singularities x^p+y^q+z^r=0. Over the years, Brieskorn spheres also have been the main objects for the understanding of the algebraic structure of the integral homology cobordism group.
In this talk, we will present several families of Brieskorn spheres which do or do not bound integral and rational homology balls via Ozsváth-Szabó d-invariant, involutive Heegaard Floer homology, and Kirby calculus. Also, we will investigate their positions in both integral and rational homology cobordism groups.
Mathematics
Audience: researchers in the discipline
Caltech geometry/topology seminar
| Organizer: | Aaron Mazel-Gee* |
| *contact for this listing |
